5. Двоичное кодирование звуковой информации

В аналоговой форме звук представляет собой волну с непрерывно меняющейся амплитудой и частотой. При преобразовании звука в цифровую дискретную форму производится временная дискретизация, при которой в определенные моменты времени амплитуда звуковой волны измеряется и квантуется, т.е. ей присваивается определенное значение из некоторого фиксированного набора. Данный метод называется еще импульсно-кодовой модуляцией PCM (Pulse Code Modulation).

Из физики известно, что звук – это колебания воздуха. Звуковая волна - это непрерывная волна с меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), то видно плавно изменяющееся с течением времени напряжение.

 

Для компьютерной обработки такой – аналоговый – сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел. Делается это, например, так – измеряется напряжение через равные промежутки времени и полученные значения записываются в память компьютера.

  

 Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его – аналого-цифровым преобразователем (АЦП).

 Чтобы воспроизвести закодированный таким образом звук, нужно сделать обратное преобразование (для этого служит цифро-аналоговый преобразователь – ЦАП), а затем сгладить получившийся ступенчатый сигнал.

 

 

Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого-цифрового преобразователя размещенного на звуковой плате. Современные 16-битные звуковые карты обеспечивают возможность кодирования 65536 различных уровней громкости  или 16-битную глубину кодирования звука. Качество кодирования звука зависит и от частоты дискретизации — количества измерений уровня сигнала в единицу времени. Эта величина может принимать значения от 8 до 48 кГц.

Чем выше частота дискретизации и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук, но при этом увеличивается и размер звукового файла. Поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения.

 

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации.

Пример.  Оцените информационный объем высококачественного стереоаудиофайла длительностью звучания 1 минута, если "глубина" кодирования 16 бит, а частота дискретизации 48 кГц.

        Информационный объем звукового файла длительностью в 1 секунду равен:

16 бит ´ 48 000 ´ 2 = 1 536 000 бит = 187,5 Кбайт

        Информационный объем  звукового файла длительностью 1 минута равен:

187,5 Кбайт/с ´ 60 с » 11 Мбайт

Задания для самостоятельного выполнения

1. Оцените информационный объем моноаудиофайла длительностью звучания 1 минута, если "глубина" кодирования и  частота дискретизации: а) 16 бит и 8 кГц, б) 16 бит и 24 кГц.

2. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц  его объем равен: а) 700Кбайт, б) 6300 кбайт.

 

    Записанные звуковые файлы можно редактировать, т.е. вырезать, копировать и вставлять фрагменты файла. Кроме того, можно увеличивать или уменьшать громкость, применять различные звуковые эффекты (эхо, уменьшение или увеличение скорости воспроизведения, воспроизведение в обратном направлении и др.), а также накладывать файлы друг на друга (микшировать). Можно также изменять качество звука путем уменьшения или увеличения глубины кодирования и частоты дискретизации. Для редактирования звуковых файлов применяются специальные программы – звуковые редакторы.

 

                        Íà ãëàâíóþ

Hosted by uCoz